
Snagging Parking Spaces with Mask R-CNN
and Python
Using Deep Learning to Solve Minor Annoyances

I live in a great city. But like in most cities, finding a parking space here is always

frustrating. Spots get snapped up quickly and even if you have a dedicated parking

space for yourself, it’s hard for friends to drop by since they can’t find a place to park.

My solution was to point a camera out the window and use deep learning to have my

computer text me when a new parking spot opens up:
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This might sound pretty complicated, but building a working version of this with deep

learning is actually pretty quick and easy. All the tools are available — it is just a matter

of knowing where to find the tools and how to put them together.

So let’s spend a few minutes and build a high-accuracy parking space notification

system with Python and Deep Learning!

Breaking Down the Problem
When we have a complicated problem that we want to solve with machine learning, the

first step is to break down the problem into a sequence for simple tasks. Then, using

our breakdown as a guide, we can pull different tools from our machine learning toolbox

to solve each of the smaller tasks. By chaining together several small solutions into a

pipeline, we’ll have a system that can do something complicated.

Here’s how I broke down the problem of detecting open parking spaces into a pipeline:

The input to the machine learning pipeline is a video stream from a normal webcam

pointed out the window:



We‘ll pass each frame of video through the pipeline, one frame at a time.

The first step in the pipeline is to detect all possible parking spaces in a frame of video.

Obviously we need to know which parts of the image are parking spaces before we can

detect which parking spaces are unoccupied.

The second step is to detect all the cars in each frame of video. This will let us track the

movement of each car from frame to frame.

The third step is to determine which of the parking spaces are currently occupied by

cars and which aren’t. This requires combining the results of the first and second steps.

And the last step is to send a notification when a parking space becomes newly

available. This will be based on changes in car positions between frames of video.

We can accomplish each of these steps a number of different ways using a variety of

technologies. There’s no single right or wrong way to build this pipeline and different

approaches will have different advantages and disadvantages. Let’s walk through each

step!

Step 1: Detecting Parking Spaces in an Image
Here’s what our camera view looks like:

We need be able to scan that image and get back a list of areas that are valid to park in,

like this:

Sample video from my webcam



The lazy approach would be hardcoding the locations of each parking space into the

program by hand instead of trying to detect the parking spaces automatically. But then if

we ever move the camera or want to detect parking spaces on a different street, we’d

have to hardcode the parking space locations again by hand. That sucks, so let’s find

an automatic way to detect parking spaces.

One idea might be to look for parking meters and assume that each meter has a

parking space beside it:

But there are some complications with this approach. First, not every parking spot has a

parking meter — in fact, we are most interested in finding spots that we don’t have to

pay for! And second, just knowing the location of a parking meter doesn’t tell us exactly

where the parking space is. It just gets us a little closer.

Another idea is to build an object detection model that looks for the parking space hash

marks drawn on the road, like this:

Valid parking locations on this city street.

Detecting parking meters in an image.



But this approach is also painful. First of all, the parking space line markers in my city

are really small and hard to see from a distance, so they will also be hard to detect with

a computer. And second, the street is full of all kinds of unrelated lines and marks. It will

be difficult to separate out which lines are parking spaces and which lines are lane

dividers or crosswalks.

Whenever you have a problem that seems difficult, take a few minutes to see if you can

think of a different way to approach the problem that sidesteps some of the technical

challenges. What exactly is a parking space anyway? A parking space is just a place

where a car parks for a long time. So maybe we don’t need to detect parking spaces at

all. Why can’t we just detect cars that don’t move for a long time and assume that they

are in parking spaces?

In other words, valid parking spaces are just places containing non-moving cars:

So if we can detect cars and figure out which ones aren’t moving between frames of

video, we can infer the locations of parking spaces. Easy enough–-let’s move on to

detecting the cars!

Detecting Cars in an Image
Detecting cars in a frame of video is a textbook object detection problem. There are lots

of machine learning approaches we could use to detect an object in an image. Here are

some of the most common object detection algorithms, in order from “old school” to

“new school”:

Train a HOG (Histogram of Oriented Gradients) object detector and slide it over•

Notice the tiny yellow marks — those are where the boundaries of each parking space are drawn
on the road.

The bounding box of each car here is actually a parking space! We don’t need to actually detect
parking spaces if we can detect stationary cars.



Train a HOG (Histogram of Oriented Gradients) object detector and slide it over

our image to find all the cars. This older, non-deep-learning approach is relatively

fast to run, but it won’t handle cars rotated in different orientations very well.

Train a CNN (Convolutional Neural Network) object detector and slide it over our

image until we find all the cars. This approach is accurate, but not that efficient

since we have to scan the same image multiple times with the CNN to find all the

cars throughout the image. And while it can easily find cars rotated in different

orientations, it requires a lot more training data than a HOG-based object detector.

Use a newer deep learning approach like Mask R-CNN, Faster R-CNN or YOLO
that combines the accuracy of CNNs with clever design and efficiency tricks that

greatly speed up the detection process. This will run relatively fast (on a GPU) as

long as we have a lot of training data to train the model.

In general, we want to choose the simplest solution that will get the job done with the

least amount of training data and not assume that we need the newest, flashiest

algorithm. But in this specific case, Mask R-CNN is a reasonable choice despite being

fairly flashy and new.

The Mask R-CNN architecture is designed in such a way where it detects objects

across the entire image in a computationally efficient manner without using a sliding

window approach. In other words, it runs fairly quickly. With a modern GPU, we should

be able to detect objects in high-res videos at several frames a second. That should be

fine for this project.

In addition, Mask R-CNN gives us lots of information about each detected object. Most

object detection algorithms only return the bounding box of each object. But Mask R-

CNN will not only give us the location of each object, but it will also give us an object

outline (or mask), like this:

To train Mask R-CNN, we need lots of pictures of the kinds objects that we want to

detect. We could go outside and take pictures of cars and trace out all the cars in those

images, but that would take a couple days of work. Luckily, cars are common objects

•

•



that lots of people want to detect, so several public datasets of car images already exist.

There’s a popular dataset called COCO (short for Common Objects In Context) that has

images annotated with object masks. In this dataset, there are over 12,000 images with

cars already outlined. Here’s one of the images in the COCO dataset:

This data is perfect for training a Mask R-CNN model.

But wait, things get even better! Since it’s so common to want to build object detection

models using the COCO dataset, lots of people have already done it and shared their

results. So instead of training our own model, we can start with a pre-trained model that

can detect cars out of the box. For this project, we’ll use the great open source Mask R-

CNN implementation from Matterport which comes with a pre-trained model.

Side note: Don’t be afraid of training a custom Mask R-CNN object detector! It’s time

consuming to annotate the data, but it is not that difficult. If you want to walk through

training a custom Mask R-CNN model using your own data, check out my book.

If we run the pre-trained model on our camera image, this is what is detected out of the

box:

An image in the COCO dataset with the objects already outlined.

http://cocodataset.org
https://github.com/matterport/Mask_RCNN
https://machinelearningisfun.com/get-the-book


Not only do we get the cars identified, but we get things like traffic lights and people too.

And hilariously, it identified one of the trees as a “potted plant.”

For each object detected in the image, we get back four things from the Mask R-CNN

model:

The type of object that was detected (as an integer). The pre-trained COCO model

knows how to detect 80 different common objects like cars and trucks. Here is a full

list of them.

A confidence score of the object detection. The higher the number, the more certain

the model is that it correctly identified the object.

The bounding box of the object in the image, given as X/Y pixel locations.

A bitmap “mask” that tells which pixels within the bounding box are part of the object

and which aren’t. With the mask data, we can also work out the outline of the object.

Here’s the Python code to detect the bounding boxes of cars using the pre-trained

model from Matterport’s Mask R-CNN implementation together with OpenCV:

When you run that script, you’ll get an image on the screen with a box around each

detected car, like this:

1.

2.

3.

4.

Our image with the default COCO objects identified — cars, people, traffic lights and a tree.
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import os

import numpy as np

import cv2

import mrcnn.config

import mrcnn.utils

from mrcnn.model import MaskRCNN

from pathlib import Path

# Configuration that will be used by the Mask-RCNN library

class MaskRCNNConfig(mrcnn.config.Config):

    NAME = "coco_pretrained_model_config"

https://gist.github.com/ageitgey/b143ee809bf08e4927dd59bace44db0d


And you’ll also get the pixel coordinates of each detected car printed in the console, like

this:

Cars found in frame of video:
Car:  [492 871 551 961]
Car:  [450 819 509 913]
Car:  [411 774 470 856]

With all that, we have successfully detected cars in an image. On to the next step!

Detecting Empty Parking Spaces
We know the pixel location of each car in our image. And by looking at multiple frames

of video in succession, we can easily work out which cars haven’t moved and assume

those areas are parking spaces. But how do we detect when a car leaves a parking

space?

The problem is that the bounding boxes of the cars in our image partially overlap:

So if we assume that each of those bounding boxes represents a parking space, it’s

possible that the box can be partially occupied by a car even when the space is empty.

We need a way to measure how much two objects overlap so we can check for “mostly

empty” boxes.

The measure we will use is called Intersection Over Union or IoU. IoU calculated by

finding the amount of pixels where two objects overlap and dividing it by the amount of

pixels covered by both objects, like this:

Each detected car has a green box around it.

Even for cars in different parking spaces, the bounding boxes of each car overlap a little bit.



This will give us a measure of how much a car’s bounding box is overlapping a parking

spot’s bounding box. With this, we can easily work out if a car is in a parking space or

not. If the IoU measure is low, like 0.15, that means the car isn’t really occupying much

of the parking space. But if the measure is high, like 0.6, that means the car is

occupying the majority of the parking space area so we can be sure that the space is

occupied.

Since IoU is such a common measurement in computer vision, often the libraries you

are using will already have an implementation of it. And in fact, the Matterport Mask R-

CNN library includes it as a function called mrcnn.utils.compute_overlaps() , so we can just

use that funciton.

Assuming we have a list of bounding boxes representing parking areas in our image,

checking if the detected cars are inside of those bounding boxes is as simple as adding

a line or two of code:

The result looks like this:

[
 [1.         0.07040032 0.         0.]
 [0.07040032 1.         0.07673165 0.]
 [0.         0.         0.02332112 0.]
]

In that 2D array, each row represents one of the parking space bounding boxes.

Likewise, each column represents how much that parking space was overlapped by one

of the detected cars. A 1.0 score means the car completely occupies the space and a

low score like 0.02 means the car touches the space but doesn’t occupy most of the

view raw
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calculate_iou.py hosted with ❤ by GitHub

    # Filter the results to only grab the car / truck bounding boxes

    car_boxes = get_car_boxes(r['rois'], r['class_ids'])

    # See how much cars overlap with the known parking spaces

    overlaps = mrcnn.utils.compute_overlaps(car_boxes, parking_areas)

    print(overlaps)



low score like 0.02 means the car touches the space but doesn’t occupy most of the

area.

To find unoccupied parking spaces, we just need to check each row in this array. If all

the numbers are zero or really small, that means nothing is occupying that space and

thus it must be free!

But keep in mind that object detection doesn’t always work perfectly with live video.

Even though Mask R-CNN is highly accurate, occasionally it can miss a car or two in a

single frame of video. So before flagging a parking space as free, we should make sure

it remains free for a little while — maybe 5 or 10 sequential frames of video. That will

prevent the system from incorrectly detecting open parking spaces just because object

detection had a temporary hiccup on one frame of video. But as soon as we see that we

have at least one parking space free for several sequentially frames of video, we are

ready to send a text!

Sending a Text
The last step of our pipeline is to send an SMS alert when we notice that a parking

space has been free for several frames of video.

Sending an SMS message from Python is very simple using Twilio. Twilio is a popular

API that lets you send an SMS message from basically any programming language with

a few lines of code. Of course, if you prefer to use a different service SMS provider, you

could use that instead. I have no stake in Twilio. It is just the first thing to comes to

mind.

To use Twilio, sign up for a trial account, create a Twilio phone number and get your

account credentials. Then, you need to install the Twilio Python client library:

pip3 install twilio

With that installed, this is the entire code to send an SMS message in Python (just

replace the values with your own account details):

To add SMS sending capabilities to our script, we can just drop that code right in. But

we need to be careful that we don’t keep sending ourselves text messages on every

frame of new video where a free parking space is still free. So we’ll need to have a flag

to track if we have already sent an SMS and make sure we don’t send another one until
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from twilio.rest import Client

# Twilio account details

twilio_account_sid = 'Your Twilio SID here'

twilio_auth_token = 'Your Twilio Auth Token here'

twilio_source_phone_number = 'Your Twilio phone number here'

# Create a Twilio client object instance

client = Client(twilio_account_sid, twilio_auth_token)

# Send an SMS

message = client.messages.create(

https://www.twilio.com/
https://www.twilio.com/try-twilio


either a certain amount of time has passed or until a different parking space is detected

to be open.

Putting it All Together
Let’s assemble each step of our pipeline into a single Python script. Here’s the

complete code:

To run this code, you’ll need to first install Python 3.6+, Matterport Mask R-CNN and

OpenCV.

I’ve purposely kept the code as barebones as possible. For example, it just assumes

whatever cars are present in the first frame of video are the parked cars. Try playing

around with it and seeing if you can improve its reliability.

Don’t be afraid to adapt the code to work in different scenarios. Just by changing the

object ids that the model looks for, you can turn the code into something else entirely.

For example, imagine that you worked at a ski resort. With a few tweaks, you could turn

this script into a system that automatically detects snow boarders jumping off a ramp

and creates highlight reels of cool snowboard jumps. Or if you work on a game reserve,

you could turn this into a system that counts zebras seen in the wild. The only limit is

your imagination. Have fun!

. . .

If you liked this article, consider signing up for my Machine Learning is Fun! newsletter:
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import os

import numpy as np

import cv2

import mrcnn.config

import mrcnn.utils

from mrcnn.model import MaskRCNN

from pathlib import Path

from twilio.rest import Client

# Configuration that will be used by the Mask-RCNN library

class MaskRCNNConfig(mrcnn.config.Config):

https://github.com/matterport/Mask_RCNN
https://pypi.org/project/opencv-python/
https://www.machinelearningisfun.com/


You can also follow me on Twitter at @ageitgey, email me directly or find me on

LinkedIn. I’d love to hear from you if I can help you or your team with machine learning.

And don’t forget to check out my new book!

Machine Learning Deep Learning Object Detection
Mask R
Cnn Python3
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